Django-data-exports Documentation
Release 0.8dev

Mathieu Agopian

Jul 06, 2017






Contents

Installation

Usage

2.1  Using the admin
2.2 Using the included example views
2.3 Export columns

Advanced usage

3.1  Export formats
3.2  Filtering exports
3.3 Using your own views
3.4  Decorating the included views
3.5 Using your own templates

Hacking

Changelog

5.1 0.8 (unreleased)
5.2 0.7 (2014-09-15)
5.3 0.6(013-11-12)
54  0.5(2013-10-14)
5.5 0.4 (2013-07-28)
5.6  Older versions

Indices and tables

2.4 Getattribute filter
2.5 Nice_display filter

AN L







Django-data-exports Documentation, Release 0.8dev

* Author: Mathieu Agopian and contributors
* Licence: BSD
* Compatibility: Python 2.6, Python 2.7, Python 3.3, Python 3.4, Django 1.3+ (class-based-views required)
* Requirements: django-inspect-model
* Project URL: https://github.com/magopian/django-data-exports/
* Documentation: http://django-data-exports.readthedocs.org/en/latest/
Django-data-exports is a model data exports app for Django. It allows you to easily create exports for your models.

Adding this app to your project will let you create exports for your models, and customize the data that will be exported
by specifying which columns to include, and which format to use.

Typical use case: display a few columns from one of your models as a HTML table to be easily copy/pasted to a
spreadsheet.

Contents 1


https://github.com/magopian/django-data-exports/contributors
https://github.com/magopian/django-data-exports/
http://django-data-exports.readthedocs.org/en/latest/

Django-data-exports Documentation, Release 0.8dev

2 Contents



CHAPTER 1

Installation

pip install django-data-exports

Then add to your project’s INSTALLED_APPS. In settings.py:

INSTALLED_APPS = (

1 v
B

# whatever you already have

1 v
14

'data_exports',

Install the models:

./manage.py syncdb # or ./manage.py migrate if you're using south

And finally, plug the urls to your ROOT_URLCONF:

urlpatterns = patterns(
L)

# ... all the other urls you already have

# exports

url (r'“exports/', include('data_exports.urls', namespace='data_exports')),




Django-data-exports Documentation, Release 0.8dev

4 Chapter 1. Installation



CHAPTER 2

Usage

Either add exports through the admin, or use the included example views. If there’s no export format attached to an
export, the data_exports/export_detail.html template will be rendered with the following context:

* export: the export itself

e data: a queryset of all the export .model ‘s instance

Using the admin

There’s nothing specific to do here: connect to the admin, and add new exports. A few things to note:

¢ when you create an export, it’s not possible to add columns at first. The reason being that the model is needed
to be able to populate the column names

* when you add an export, clicking on the “save” button will have the same effect as clicking on “save and continue
editing”

* once an export is created, and is being edited, the columns can be added (and are displayed as inlines)

Using the included example views

There’s three included example views:
* /exports/add: create a new export
* /exports/<export slug>/columns: add columns to your export
* /exports/<export slug>: visualize your export

There is, at the moment, no example view for the export formats.




Django-data-exports Documentation, Release 0.8dev

Export columns

Column choices make use of django-inspect-model to build the list of accessible “items”. Please check this app’s
documentation to know more about “items”.

Choices are built by data_exports.forms.get_choices, and will consist of all the accessible items on the
exported model, and on all its related models. The only related fields accessible are those on models that are directly
related, using forward or reverse OneToOne fields and forward ForeignKey fields.

Example:

class Foo (models.Model) :
name = CharField (max_length=50)
bar = ForeignKey (Bar)

class Bar (models.Model) :
name = CharField(max_length=50)

An export of Foo will have the following column choices:
* name: Foo.name
¢ bar: Foo.bar, which is unicode(Foo.bar)
* bar.name: Bar.name

To display the value of those columns, the included templates use data_exports.templatetags.
getter_tags:

Getattribute filter

{% load getter_tags %}
{{ objlgetattribute:column }}

This is roughly equivalent to the getatt r python builtin, but can cope with column choices:

¢ if column doesn’t have a dot, return getattr (obj, column), or getattr (obj, column) () ifit’s
a callable

¢ if column does have a dots (eg: bar .name), recursively call getattribute () to get to the final attribute:

attr = getattribute (obj, 'bar.name')
# equivalent to:

temp = getattr(obj, 'bar')

attr = getattr(temp, 'name')

Nice_display filter

{% load getter_tags %}
{{ objlgetattribute:column|nice_display }}

For now, all this does is return a comma-separated list of related instances for a many-to-many field.

If the item field has an all method:

6 Chapter 2. Usage



http://django-inspect-model.readthedocs.org/en/latest/

Django-data-exports Documentation, Release 0.8dev

return ', '.join(map(unicode, item.all()))

2.5. Nice_display filter 7



Django-data-exports Documentation, Release 0.8dev

8 Chapter 2. Usage



CHAPTER 3

Advanced usage

Export formats

Exports can export to a given format:

class Format (models.Model) :
name = models.CharField(max_length=50)
file_ext = models.CharField( max_length=10, blank=True)
mime = models.CharField(max_length=50)
template = models.CharField (max_length=255)

The mime field is the Content-Type needed for the response. f£ile_ext will be used to compute the export’s
filename, provided via Content-Disposition header.

Example: let’s take a naive export to csv:
* mime: text/csv
* file_ext: csv
¢ name: Naive CSV format
e template: data_exports/export_detail_csv.html (included as an example)

If an export uses this format, visiting the export’s view page /exports/<export slug> will offer a file down-
load, named <export slug>.csv.

Filtering exports

To restrict entries access, you can use a class method or a static method export_queryset which will get the
request object and returns the queryset of items to display.

from django.contrib.auth.models import User
from django.db import models




Django-data-exports Documentation, Release 0.8dev

class Client (models.Model) :
name = models.CharField(max_length=63)
users = models.ManyToManyField (User)

class ClientData (models.Model) :
client = models.ForeignKey ('Client")
address = models.CharField (max_length=255)
money_hidden_in_the_garden = models.IntegerField()

@classmethod
def export_queryset (cls, request):
gs = cls.objects.all()
if not request.user.is_superuser:
gs = gs.filter(client___in=request.user.client_set.all())
return gs

Using your own views

To use your own views, you need to use the same url names as in data_exports/urls.py, and make sure they
use the data_exports namespace, as django.core.urlresolvers. reverse is used internally to compute
the needed urls.

You can check the included example views in data_exports/views.py, and of course reuse the forms provided
indata_exports/forms.py.

Decorating the included views

Say you need to decorate the export view with the staff_member_required decorator:

url (r'“export/ (?P<slug>[~/]1+)/2S$"',
staff_member_required (export_view),
name="'"export_view'),

You still need to include this new url using a namespace, or the calls to reverse in the views won’t work. This is a
way to do it (taken from the Django documentation:

from django.conf.urls import include, patterns, url

data_exports_patterns = patterns('’',
url (r'“export/ (?P<slug>["/]+)/?$",
staff_member_required (export_view),
name="'export_view'),

url (r'“exports', include (data_exports_patterns, namespace='data_exports')),

Using your own templates

Django-data-exports makes use of Django’s template overloading mechanism. This means that if you provide

10 Chapter 3. Advanced usage



https://docs.djangoproject.com/en/dev/topics/http/urls/#url-namespaces-and-included-urlconfs

Django-data-exports Documentation, Release 0.8dev

a data_exports/export_detail.html template which has precedence over the one bundled with the app,
it’ll be used.

Example: say you have a templates/ folder in your project, and the appropriate TEMPLATE_DIRS setting. Place
your own template in project/templates/data_exports/export_detail.html tohave it used instead
of the template bundled with the app in data_exports/templates/data_exports/export_detail.
html.

There’s three included templates:
* data_exports/base.html: extended by the two other templates
* data_exports/export_detail.html: used by default for exports that don’t specify a format

* data_exports/export_detail_csv.html: used by the “naive csv format” detailed in Export formats.

3.5. Using your own templates 11



Django-data-exports Documentation, Release 0.8dev

12 Chapter 3. Advanced usage



CHAPTER 4

Hacking

Setup your environment:

git clone https://github.com/magopian/django-data-exports.git
cd django-data-export

Hack and run the tests using Tox to test on all the supported python and Django versions:

’make test

To build the docs:

’make docs

13



https://pypi.python.org/pypi/tox

Django-data-exports Documentation, Release 0.8dev

14 Chapter 4. Hacking



CHAPTER B

Changelog

0.8 (unreleased)

0.7 (2014-09-15)

* increased the length of Column.label to 255 chars (fixes #9)
* now compatible with Djangol.7

* perf improvements, queryset filtering (fixes #7), thanks @ Christophe31

0.6 (2013-11-12)

* fixes #5: compatibility with django 1.6

0.5 (2013-10-14)

* fixes #3: Export’s slug is now unique

* fixes #4: fix exports failing for models pointed to with a OneToOneField

0.4 (2013-07-28)

* compatible python 3.3

15



Django-data-exports Documentation, Release 0.8dev

Older versions

* 0.3: compatible with django 1.4, download link in the admin
* 0.2: fields on related models also available to exports

e (.1: initial version

16 Chapter 5. Changelog



CHAPTER O

Indices and tables

* genindex
* modindex

e search

17



	Installation
	Usage
	Using the admin
	Using the included example views
	Export columns
	Getattribute filter
	Nice_display filter

	Advanced usage
	Export formats
	Filtering exports
	Using your own views
	Decorating the included views
	Using your own templates

	Hacking
	Changelog
	0.8 (unreleased)
	0.7 (2014-09-15)
	0.6 (2013-11-12)
	0.5 (2013-10-14)
	0.4 (2013-07-28)
	Older versions

	Indices and tables

